Cytosurge and Swiss Federal Institute of Technology funded by Innosuisse

Michael Gabi and Pascal Behr, Cytosurge Founders

Cytosurge is delighted to announce that together with the Laboratory of Biosensors and Bioelectronics (LBB) at the Swiss Federal Institute of Technology (ETH) in Zurich it has been awarded a prestigious project grant by the Swiss Innovation Agency Innosuisse.

Interest in organ-on-a-chip technologies has increased in recent years, particularly in the field of pharmacological testing. However, the current methods largely lack the capabilities of manipulating biological models made of spheroids, organoids, or single cells.

Especially working with highly sensitive cells, such as stem cells (induced pluripotent stem cells; iPSCs) or neurons is challenging, thereby hindering their efficient use in such systems.

Cytosurge’s high precision tech helpful

Cytosurge‘s FluidFM® OMNIUM system is designed for single cell research.

Its proprietary FluidFM® technology combines force microscopy with microfluidics and enables gentle cell manipulation while preserving cell viability.

The technology is especially suited for neurons, where maintaining the viability of manipulated cells is challenging. With its high precision, the FluidFM® OMNIUM can precisely place single neurons in pre-defined patterns to control their growth into complex systems.

Now the unique capabilities of Cytosurge’s FluidFM® OMNIUM system will be leveraged through the neuroscience expertise of LBB, ETH Zurich, led by Prof. Janos Vörös.

The aim is to develop a method for autonomous recognition of viable neurons and their automatic repositioning into a defined pattern. Neuroscientists can then efficiently build highly defined complex model systems for neurodegenerative diseases starting from single neurons.

“This project addresses the most critical bottleneck of spheroid, organoid and single cell research,” stated Prof. Janos Vörös, Head of the Laboratory of Biosensors and Bioelectronics (LBB) at the Swiss Federal Institute of Technology (ETH).

“In collaboration with Cytosurge, the automated handling of tiny biological objects with unprecedented precision enables us to create well-defined neuronal networks consisting of multiple cell types to drive neuroscience from the bottom-up – starting from a single cell.”

Cytosurge and ETH share a common vision

By advancing the technology for study of neuronal functioning at single cell level, the partners have a shared vision to provide tools to enable the realization of new organ-on-a-chip systems that could better mimic neuropathies like Alzheimer’s, Parkinson’s, ALS and many more.

Dr. Pascal Behr, CEO of Cytosurge made the following remarks.

“There is a huge need for biologically relevant models in the neuroscience field to better understand how brains work and how we can tackle neurodegenerative diseases.”

“From our interactions with the neuroscience community, we have realized that there is a great need for solutions that allow researchers to go beyond what is possible in neuroscience.”

“This project with Prof. Janos Vörös enables us to further automate our FluidFM® technology to develop such neuronal network models even faster and with even higher precision.”

“Our aim is to accelerate neuroscience research to find therapies that can improve the quality of life for patients with neurodegenerative diseases.”